GradAuto: Energy-Oriented Attack on Dynamic Neural Networks

نویسندگان

چکیده

Dynamic neural networks could adapt their structures or parameters based on different inputs. By reducing the computation redundancy for certain samples, it can greatly improve computational efficiency without compromising accuracy. In this paper, we investigate robustness of dynamic against energy-oriented attacks. We present a novel algorithm, named GradAuto, to attack both depth and width models, where reduce redundant by skipping some intermediate layers while adaptively activate subset neurons in each layer. Our GradAuto carefully adjusts direction magnitude gradients efficiently find an almost imperceptible perturbation input, which will more units during inference. way, effectively boosts cost models with architectures. Compared previous techniques, obtains state-of-the-art result recovers 100% network reduced FLOPs average models. Furthermore, demonstrate that offers us great control over attacking process serve as one keys unlock potential attack. Please visit https://github.com/JianhongPan/GradAuto code.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trojaning Attack on Neural Networks

With the fast spread of machine learning techniques, sharing and adopting public machine learning models become very popular. This gives attackers many new opportunities. In this paper, we propose a trojaning attack on neuron networks. As the models are not intuitive for human to understand, the attack features stealthiness. Deploying trojaned models can cause various severe consequences includ...

متن کامل

Dynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks

Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...

متن کامل

Object-Oriented Dynamic Networks

This paper contains description of such knowledge representation model as Object-Oriented Dynamic Network (OODN), which gives us an opportunity to represent knowledge, which can be modified in time, to build new relations between objects and classes of objects and to represent results of their modifications. The model is based on representation of objects via their properties and methods. It gi...

متن کامل

Robust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks

Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...

متن کامل

Ranking Attack Graphs with Graph Neural Networks

Network security analysis based on attack graphs has been applied extensively in recent years. The ranking of nodes in an attack graph is an important step towards analyzing network security. This paper proposes an alternative attack graph ranking scheme based on a recent approach to machine learning in a structured graph domain, namely, Graph Neural Networks (GNNs). Evidence is presented in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2022

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-031-19772-7_37